## Game Physics

Game and Media Technology Master Program - Utrecht University

Dr. Nicolas Pronost

## Collision detection

## The story so far

- We have rigid bodies moving in space according to forces applied on them
- We have seen when and how to apply gravity, drag etc.
- But reaction forces occur when a rigid body is in contact with another body
- So we need to be able to detect that event and to apply the correct reaction force
- Collision detection
- Collision solving


## Collisions and geometry

- Now is finally when we need the geometry of the object
- A point (e.g. COM) is not enough anymore
- We must know where the objects are in contact to apply the reaction force at that position


CryEngine 3
(BeamNG)

## Collision detection algorithm

- Collision detection occurs in three phases
- Broad phase
- disregard pairs of objects that cannot collide
$>$ model and space partitioning
- Mid phase
- determine potentially colliding primitives
> movement bounds
- Narrow phase
- determine exact contact between two shapes
> Gilbert-Johnson-Keerthi algorithm


## Broad phase

## Collisions and geometry

- Game physics engines use a simplification of the geometry
- To compare 'every vertex of every mesh' at each frame is usually not possible in real-time
- As primitive shapes are used to estimate the inertia, primitive shapes are also used to estimate the collisions
- Collision shapes do not have to be the same as inertia shapes


## Model partitioning

- Technique used to quickly check complex objects using approximating bounding volumes
- A bounding volume has the following properties
- It should fit as tight as possible the object
- Overlap test with another volume should be fast
- It should be described with little parameters
- It should be fast to recalibrate under transformation
- What primitives to use so that collision checking is fast and accurate?


## Convex Hull

- Create the smallest convex surface/volume enclosing the object
- Good representation of all convex objects
- Create false positive collisions for concave objects
- Can still be very complex, so costly detection



## Bounding Sphere

- Create the minimal sphere enclosing the object
- Usually poor fit of the object (e.g. pipe), many false positive collisions
- Stored in only 4 scalars, collision detection between spheres is very fast (11 prim. op.)
- Trivial to update under rotation...



## Bounding Capsule

- The minimal swept bounding sphere enclosing the object
- Better fit than bounding sphere
- Collision detection still quite fast (bounding sphere with a distance to segment)



## Axis Aligned Bounding Box

- Create a box which dimensions are aligned with the axes of the world coordinate system
- Usually poor fit of the object (e.g. diagonal box), many false positive collisions, recalculation after rotation
- Stored in 6 scalars, collision detection between AABBs is very fast (6 prim. op.)



## Oriented Bounding Box

- The general minimal bounding box (no preferred orientation), abbreviated as OBB
- Better fit than AABB, but worse than convex hull (e.g. triangle)
- Stored in 9+6 scalars, collision detection slower than AABB (200 prim. op.), but much faster than convex hull
- Similar to bounding capsule with sharp ends



## Other primitives

- You can imagine using almost any primitive or combination of primitives
- As soon as the detection is faster than on the object itself there is an interest
- Bounding cylinder
- Bounding ellipsoid
- etc.


## Bounding hierarchies

- Since one bounding volume can still creates many false positives, we build a hierarchy of volumes
- Called Bounding Volume Hierarchy (BVH)
- It has a tree structure with primitive volumes as leaves and enclosing volumes as nodes
- During collision detection, the hierarchies are traversed and child bounding volumes are checked only when necessary
- children do not have to be examined if their parent volumes do not intersect


## Bounding hierarchies



## Space partitioning

- Used to make a fast selection of which models to test for collision
- Based on the spatial configuration of the scene
- Associate together objects that are physically close to each other
- Only need to test collision with objects in the same partition
- Quickly disregards many unnecessary tests


## Octree

- An octree is a tree data structure in which each node has exactly eight children
- Partition the space in eight cubes (called octants) of equal volume along the dimensions of the space



## Kd-tree

- A kd-tree ( k -dimensional) is a binary tree where every node is alternately associated with one of the k-dimensions
- Usually the median hyperplane is chosen at each node



## Binary space partitioning

- Binary space partitioning (BSP) creates BSP trees
- Hyperplanes recursively partition space into two volumes but the planes can have any orientation
- Hyperplanes are usually defined by polygons in the scene



## Space partitioning summary



Uniform spatial subdivision


Quadtree Octree


Kd-tree


BSP-tree

## Mid phase

## Collision between primitives

- You can imagine representing different objects with different primitives according to their original geometry
- A simple convex object => convex hull
- A spherical object like a ball => bounding sphere
- A body part => bounding capsule
- A box sliding on the floor => AABB
- A box-like object that can translate and rotate => OBB
- Ideally you have to implement detection algorithms for every possible combination of primitives
- Some are easier to implement than others


## Sphere-Sphere

- For two spheres $A$ and $B$ to intersect, the distance between their centers $c_{A}$ and $c_{B}$ should be smaller than the sum of their radii $r_{A}$ and $r_{B}$

$$
A \cap B \neq \emptyset \Leftrightarrow\left\|c_{A}-c_{B}\right\| \leq r_{A}+r_{B}
$$

- Distance between two non-intersecting spheres

$$
d(A, B)=\max \left(\left\|c_{A}-c_{B}\right\|-\left(r_{A}+r_{B}\right), 0\right)
$$

- Penetration depth of two intersecting spheres

$$
p(A, B)=\max \left(r_{A}+r_{B}-\left\|c_{A}-c_{B}\right\|, 0\right)
$$

## AABB-AABB

- Project the boxes onto the axes, you will obtain two/three intervals per box, the two boxes collide if the intervals overlap



## AABB-AABB

$A \cap B=\emptyset \Leftrightarrow$

$$
\begin{aligned}
& x_{\max _{A}}<x_{\min _{B}} \vee y_{\max _{A}}<y_{\min _{B}} \vee \\
& x_{\min _{A}}>x_{\max _{B}} \vee y_{\min _{A}}>y_{\max _{B}}
\end{aligned}
$$



## Separating Axis Theorem

- Given two convex shapes, if we can find an axis along which the projections of the two shapes do not overlap, then the shapes do not collide



## Separating Axis Theorem

- In 2D, each of these potential separating axes is perpendicular to one of the edges of each shape
- We solve our 2D overlap query using a series of 1D queries
- If we find an axis along which the objects do not overlap, we don't have to continue testing the rest of the axes, we know that the objects don't overlap
- As in a game it is more likely for two objects to not overlap, it speeds up calculations


## Separating Axis Theorem

- For AABB-AABB it is easy to apply as the possible separating axes on which we have to project the object are the main axes
- Equivalent to our previous collision checking of overlap of intervals


## Separating Axis Theorem

- For non-axis-aligned shapes, we have to project our objects on the axes perpendicular to the edges

Box-Polygon


Circle-Polygon


## Sweep and prune algorithm

- Several variants exist but all first sort then prune
- Objects are defined with their AABB
- 2 objects overlap if and only if their projections on the $x, y$ and $z$ coordinate axes overlap
- The projections give 3 [min,max] intervals
- The min and max are stored in 3 sorted structures
- Scan the objects in increasing order of min
- Detect possible overlapping pair when min of an object is smaller than max of another
- Combine the three results (AND condition to overlap)


## Sweep and prune algorithm

x, y or z axis



## The time issue

- Looking at uncorrelated sequences of positions is not enough
- Our objects are in motion and we need to know when and where they collide
- as we want to react to the collision e.g. bouncing



## Tunneling

- Collision in-between steps can lead to tunneling
- Objects pass through each other
- They did not collide at $t$ and do not collide either at $t+\Delta t$
- But they did collide somewhere in between
- Lead to false negatives
- Tunneling is a serious issue in gameplay
- Players getting to places they should not
- Projectiles passing through characters and walls
- Impossibility for the player to trigger actions on contact events


## Tunneling



## Tunneling

- Small objects tunnel more easily

- Fast moving objects tunnel more easily



## Tunneling

- Possible solutions
- Minimum size requirement?
- Fast object still tunnel
- Maximum speed limit?
- Small and fast objects not allowed (e.g. bullets...)
- Smaller time step?
- Essentially the same as speed limit
- We need another approach to the solution


## Movement bounds

- Bounds enclosing the motion of the shape
- In the time interval $\Delta t$, the linear motion of the shape is enclosed
- Again, convex bounds are used, so the movement bounds are themselves primitive shapes


## Movement bounds

- Sphere

- AABB

- OBB



## Movement bounds

- If movement bounds do not collide, there is no collision
- If movement bounds collide, there is possibly a collision



## Swept bounds

- As primitive based movement bounds do not have a really good fit, we can use swept bounds
- More accurate, but more costly to calculate collisions
- A swept bound (or swept shape) is constructed from the union of all surfaces (volumes) of a shape under a transformation
- we use the affine transformation from $t$ to $t+\Delta t$


## Swept bounds

- Swept sphere > capsule

- Swept AABB
> convex poly

- Swept triangle
> convex poly

- Swept convex poly
> convex poly



## Narrow phase

## GJK algorithm

- This algorithm effectively determines the intersection between polyhedra by computing the Euclidean distance between them
- Based on the property that the distance is the same as the shortest distance between their Minkowski difference and the origin
- Two new problems
- Calculate the Minkowski difference between two objects
- Calculate its distance to the origin (i.e. coordinate of the closest point to the origin)


## Minkowski difference

- The Minkowski difference $A \ominus B=A \oplus(-B)$ is obtained by adding $A$ to the reflection of $B$ about the origin
- Addition here means the swept bound of $B$ using $A$
- If $A$ and $B$ collide, $A \ominus B$ contains the origin



## GJK algorithm

- To calculate the shortest distance to the origin, the following algorithm is used

1. Initialize the simplex set $Q$ with up to $d+1$ points from the Minkowski difference object $C$
2. If the origin is in the convex hull $C H(Q)$, then stop (collision detected)
3. Compute the point $P$ of minimum norm of $C H(Q)$
4. Reduce $Q$ to the smallest subset $Q^{\prime}$ of $Q$ such that $P \in C H\left(Q^{\prime}\right)$
5. Let $V=S_{c}(-P)$ be a supporting point in direction $-P$
6. If $V$ is no more extreme than $P$ in direction $-P$, then return $\|P\|$
7. Add $V$ to $Q$ and go to step 2

## GJK algorithm example

- Imagine the following Minkowski difference object $C$ and origin $O$



## GJK algorithm example

1. Initialize the simplex set $Q$ with up to $d+1$ points from the Minkowski difference object $C$


1-simplex


3-simplex


## GJK algorithm example

1. Initialize the simplex set $Q$ with up to $d+1$ points from the Minkowski difference object $C$

$$
Q=\left\{Q_{0}, Q_{1}, Q_{2}\right\}
$$



$$
o^{+}
$$

## GJK algorithm example

2. If the origin is in the convex hull $C H(Q)$, then stop (collision detected)

$$
Q=\left\{Q_{0}, Q_{1}, Q_{2}\right\}
$$

## GJK algorithm example

3. Compute the point $P$ of minimum norm of the convex hull $C H(Q)$
$Q=\left\{Q_{0}, Q_{1}, Q_{2}\right\}$
$Q_{0}$

## GJK algorithm example

4. Reduce $Q$ to the smallest subset $Q^{\prime}$ of $Q$ such that $P \in C H\left(Q^{\prime}\right)$

$$
Q=\left\{Q_{1}, Q_{2}\right\}
$$



## GJK algorithm example

5. Let $V=S_{c}(-P)$ be a supporting point in direction
$-P$


Supporting point $V$ for a direction $d$ returned by support mapping function $S_{c}(d)$

## GJK algorithm example

5. Let $V=S_{c}(-P)$ be a supporting point in direction $-P$. Let's call it $V_{1}$.


## GJK algorithm example

6. If $V$ is no more extreme than $P$ in direction $-P$, then return $\|P\|$
7. Add $V$ to $Q$ and go to step 2
$Q=\left\{Q_{1}, Q_{2}, V_{1}\right\}$
$o^{+}$

## GJK algorithm example

2. If the origin is in the convex hull $C H(Q)$, then stop (collision detected)

$$
Q=\left\{Q_{1}, Q_{2}, V_{1}\right\}
$$



## GJK algorithm example

3. Compute the point $P$ of minimum norm of the convex hull $C H(Q)$


## GJK algorithm example

4. Reduce $Q$ to the smallest subset $Q^{\prime}$ of $Q$ such that $P \in C H\left(Q^{\prime}\right)$

$$
Q=\left\{Q_{2}, V_{1}\right\}
$$



## GJK algorithm example

5. Let $V=S_{c}(-P)$ be a supporting point in direction $-P$. Let's call it $V_{2}$.

$$
Q=\left\{Q_{2}, V_{1}\right\}
$$



## GJK algorithm example

6. If $V$ is no more extreme than $P$ in direction $-P$, then return $\|P\|$


## Supporting point

- In step 5 we had to find the supporting point of $C$ in the direction $-P$
- It was intuitive an our example but how can we automatically calculate that point in any given situation?
- we need the actual definition of a supporting point


## Supporting point

- A supporting point $V$ of a convex set $C$ in a direction $d$ is one of the most distant points along $d$
- In other words $V$ is a supporting point if

$$
d \cdot V=\max \{d \cdot X: X \in C\}
$$

- that is, $V$ is a point for which $d \cdot V$ (its projection on $V$ ) is maximal
- supporting points are sometimes called extreme points, and are not necessarily unique
- for a polytope, one of the vertices can always be selected as a supporting point for a given direction


## Support mapping

- A support mapping $S_{C}(d)$ is a function that maps the direction $d$ into a supporting point of $C$
- For simple convex shapes, support mappings can be given in closed form
- Sphere centered at $c$ of radius $r$

$$
S_{C}(d)=c+r \frac{d}{\|d\|}
$$

- AABB centered at $c$ with size $2 e_{x} \times 2 e_{y} \times 2 e_{z}$

$$
S_{C}(d)=c+\left(\operatorname{sign}\left(d_{x}\right) e_{x}, \operatorname{sign}\left(d_{y}\right) e_{y}, \operatorname{sign}\left(d_{z}\right) e_{z}\right)
$$

where $\operatorname{sign}(\alpha)=-1$ if $\alpha<0$ and 1 otherwise

- Formulas exist for cylinder, cone etc.


## Support mapping

- Convex shapes of higher complexity require the support mapping function to determine a support point using numerical methods
- For a polytope of $n$ vertices, a supporting vertex is trivially found in $O(n)$ by searching over all vertices
- A greedy algorithm can be used to optimize the search by exploring the polytope through a simple hill-climbing algorithm (using the $d \cdot X_{i}$ values)
- with extra optimizations we can design an algorithm in $O(\log n)$
- we can also use frame coherency for determining the starting point, and then in practice we observe a performance almost insensitive to the complexity of the objects!


## Collision detection algorithm

- Remember the collision detection algorithm
- Broad phase
- disregard pairs of objects that cannot collide
> model and space partitioning
- Mid phase
- determine potentially colliding primitives
> movement bounds
- Narrow phase
- determine exact contact between two shapes
> Gilbert-Johnson-Keerthi algorithm


# End of <br> Collision detection 

Next
Collision resolution

