
Game Physics

Game and Media Technology

Master Program - Utrecht University

Dr. Nicolas Pronost

Collision detection

Game Physics

• We have rigid bodies moving in space according to

forces applied on them

• We have seen when and how to apply gravity,

drag etc.

• But reaction forces occur when a rigid body is in

contact with another body

• So we need to be able to detect that event and to

apply the correct reaction force

– Collision detection

– Collision solving

3

The story so far

Game Physics

• Now is finally when we need the geometry of the

object

– A point (e.g. COM) is not enough anymore

– We must know where the objects are in contact to apply

the reaction force at that position

4

Collisions and geometry

CryEngine 3

(BeamNG)

Game Physics

• Collision detection occurs in three phases

– Broad phase

• disregard pairs of objects that cannot collide

model and space partitioning

– Mid phase

• determine potentially colliding primitives

movement bounds

– Narrow phase

• determine exact contact between two shapes

Gilbert-Johnson-Keerthi algorithm

5

Collision detection algorithm

Broad phase

Game Physics

• Game physics engines use a simplification of the

geometry

– To compare ‘every vertex of every mesh’ at each frame

is usually not possible in real-time

– As primitive shapes are used to estimate the inertia,

primitive shapes are also used to estimate the collisions

– Collision shapes do not have to be the same as inertia

shapes

7

Collisions and geometry

Game Physics

• Technique used to quickly check complex objects

using approximating bounding volumes

• A bounding volume has the following properties

– It should fit as tight as possible the object

– Overlap test with another volume should be fast

– It should be described with little parameters

– It should be fast to recalibrate under transformation

• What primitives to use so that collision checking is

fast and accurate?

8

Model partitioning

Game Physics

• Create the smallest convex surface/volume

enclosing the object

– Good representation of all convex objects

– Create false positive collisions for concave objects

– Can still be very complex, so costly detection

9

Convex Hull

Game Physics

• Create the minimal sphere enclosing the object

– Usually poor fit of the object (e.g. pipe), many false

positive collisions

– Stored in only 4 scalars, collision detection between

spheres is very fast (11 prim. op.)

– Trivial to update under rotation...

10

Bounding Sphere

Game Physics

• The minimal swept bounding sphere enclosing the

object

– Better fit than bounding sphere

– Collision detection still quite fast (bounding sphere with

a distance to segment)

11

Bounding Capsule

Game Physics

• Create a box which dimensions are aligned with

the axes of the world coordinate system

– Usually poor fit of the object (e.g. diagonal box), many

false positive collisions, recalculation after rotation

– Stored in 6 scalars, collision detection between AABBs

is very fast (6 prim. op.)

12

Axis Aligned Bounding Box

Game Physics

• The general minimal bounding box (no preferred

orientation), abbreviated as OBB

– Better fit than AABB, but worse than convex hull (e.g.

triangle)

– Stored in 9+6 scalars, collision detection slower than

AABB (200 prim. op.), but much faster than convex hull

– Similar to

bounding capsule

with sharp ends

13

Oriented Bounding Box

Game Physics

• You can imagine using almost any primitive or

combination of primitives

• As soon as the detection is faster than on the

object itself there is an interest

– Bounding cylinder

– Bounding ellipsoid

– etc.

14

Other primitives

Game Physics

• Since one bounding volume can still creates many

false positives, we build a hierarchy of volumes

• Called Bounding Volume Hierarchy (BVH)

• It has a tree structure with primitive volumes as

leaves and enclosing volumes as nodes

• During collision detection, the hierarchies are

traversed and child bounding volumes are

checked only when necessary

– children do not have to be examined if their parent

volumes do not intersect

15

Bounding hierarchies

Game Physics 16

Bounding hierarchies

Game Physics

• Used to make a fast selection of which models to

test for collision

• Based on the spatial configuration of the scene

• Associate together objects that are physically

close to each other

• Only need to test collision with objects in the same

partition

• Quickly disregards many unnecessary tests

17

Space partitioning

Game Physics

• An octree is a tree data structure in which each

node has exactly eight children

• Partition the space in eight cubes (called octants)

of equal volume along the dimensions of the space

18

Octree

Game Physics

• A kd-tree (k-dimensional) is a binary tree where

every node is alternately associated with one of

the k-dimensions

• Usually the median hyperplane is chosen at each

node

19

Kd-tree

Game Physics

• Binary space partitioning (BSP) creates BSP trees

• Hyperplanes recursively partition space into two

volumes but the planes can have any orientation

• Hyperplanes are usually defined by polygons in

the scene

20

Binary space partitioning

A

B

1

1

2

2

3

3

PART

1

PART

2

PART 3

PART 6

PART

4 PART

5

PART 1

A1

A2

A3

A4

B1

B2

B3

PART 2

PART 3

PART 4

PART 5

PART 6 B

A

4

Game Physics

Uniform spatial

subdivision

21

Space partitioning summary

Quadtree

Octree

Kd-tree BSP-tree

Mid phase

Game Physics

• You can imagine representing different objects with

different primitives according to their original

geometry

– A simple convex object => convex hull

– A spherical object like a ball => bounding sphere

– A body part => bounding capsule

– A box sliding on the floor => AABB

– A box-like object that can translate and rotate => OBB

• Ideally you have to implement detection algorithms

for every possible combination of primitives

– Some are easier to implement than others

23

Collision between primitives

Game Physics

• For two spheres 𝐴 and 𝐵 to intersect, the distance

between their centers 𝑐𝐴 and 𝑐𝐵 should be smaller

than the sum of their radii 𝑟𝐴 and 𝑟𝐵

𝐴 ∩ 𝐵 ≠ ∅ ⇔ 𝑐𝐴 − 𝑐𝐵 ≤ 𝑟𝐴 + 𝑟𝐵

• Distance between two non-intersecting spheres
𝑑 𝐴, 𝐵 = max 𝑐𝐴 − 𝑐𝐵 − 𝑟𝐴 + 𝑟𝐵 , 0

• Penetration depth of two intersecting spheres

𝑝 𝐴, 𝐵 = max 𝑟𝐴 + 𝑟𝐵 − 𝑐𝐴 − 𝑐𝐵 , 0

24

Sphere-Sphere

Game Physics

• Project the boxes onto the axes, you will obtain

two/three intervals per box, the two boxes collide if

the intervals overlap

25

AABB-AABB

A

B

A

B

Game Physics

𝐴 ∩ 𝐵 = ∅ ⇔
𝑥𝑚𝑎𝑥𝐴

< 𝑥𝑚𝑖𝑛𝐵
∨ 𝑦𝑚𝑎𝑥𝐴

< 𝑦𝑚𝑖𝑛𝐵
∨

𝑥𝑚𝑖𝑛𝐴
> 𝑥𝑚𝑎𝑥𝐵

∨ 𝑦𝑚𝑖𝑛𝐴
> 𝑦𝑚𝑎𝑥𝐵

26

AABB-AABB

A

B

𝑥

𝑦

𝑥𝑚𝑖𝑛𝐴
 𝑥𝑚𝑎𝑥𝐴

𝑥𝑚𝑖𝑛𝐵
 𝑥𝑚𝑎𝑥𝐵

𝑦𝑚𝑖𝑛𝐵

𝑦𝑚𝑖𝑛𝐴

𝑦𝑚𝑎𝑥𝐵

𝑦𝑚𝑎𝑥𝐴

Game Physics 27

Separating Axis Theorem

• Given two convex shapes, if we can find an axis

along which the projections of the two shapes do

not overlap, then the shapes do not collide

Game Physics

• In 2D, each of these potential separating axes is

perpendicular to one of the edges of each shape

– We solve our 2D overlap query using a series of 1D

queries

– If we find an axis along which the objects do not overlap,

we don't have to continue testing the rest of the axes,

we know that the objects don't overlap

• As in a game it is more likely for two objects

to not overlap, it speeds up calculations

28

Separating Axis Theorem

Game Physics

• For AABB-AABB it is easy to apply as the possible

separating axes on which we have to project the

object are the main axes

• Equivalent to our previous collision checking of

overlap of intervals

29

Separating Axis Theorem

Game Physics

• For non-axis-aligned shapes, we have to project

our objects on the axes perpendicular to the edges

Box-Polygon Box-Curve Circle-Polygon

30

Separating Axis Theorem

Game Physics

• Several variants exist but all first sort then prune

• Objects are defined with their AABB

• 2 objects overlap if and only if their projections on

the x, y and z coordinate axes overlap

– The projections give 3 [min,max] intervals

– The min and max are stored in 3 sorted structures

– Scan the objects in increasing order of min

– Detect possible overlapping pair when min of an object

is smaller than max of another

– Combine the three results (AND condition to overlap)

31

Sweep and prune algorithm

Game Physics 32

Sweep and prune algorithm

x, y or z axis

A

B

C

D

CurrentObjects

CandidatePairs

[C]

[CA] [BC,BA] [DA]

[C,A] [C,A,B] [A,B]

=

[CA,BC,BA,DA]

[A] [] [A,D] [A]

∪ ∪

[]

Game Physics

• Looking at uncorrelated sequences of positions is

not enough

• Our objects are in motion and we need to know

when and where they collide

– as we want to react to the collision e.g. bouncing

33

The time issue

At 𝑡

At 𝑡 + ∆𝑡

Game Physics

• Collision in-between steps can lead to tunneling

– Objects pass through each other

• They did not collide at 𝑡 and do not collide either at 𝑡 + ∆𝑡

• But they did collide somewhere in between

– Lead to false negatives

• Tunneling is a serious issue in gameplay

– Players getting to places they should not

– Projectiles passing through characters and walls

– Impossibility for the player to trigger actions on contact

events

34

Tunneling

Game Physics 35

Tunneling

Game Physics

• Small objects tunnel more easily

• Fast moving objects tunnel more easily

36

Tunneling

Game Physics

• Possible solutions

– Minimum size requirement?

• Fast object still tunnel

– Maximum speed limit?

• Small and fast objects not allowed (e.g. bullets...)

– Smaller time step?

• Essentially the same as speed limit

• We need another approach to the solution

37

Tunneling

Game Physics

• Bounds enclosing the motion of the shape

– In the time interval ∆𝑡, the linear motion of the shape is

enclosed

– Again, convex bounds are used, so the movement

bounds are themselves primitive shapes

38

Movement bounds

Game Physics

• Sphere

39

Movement bounds

• AABB

• OBB

Game Physics

• If movement bounds do not collide, there is no

collision

• If movement bounds collide, there is possibly a

collision

40

Movement bounds

Game Physics

• As primitive based movement bounds do not have

a really good fit, we can use swept bounds

– More accurate, but more costly to calculate collisions

• A swept bound (or swept shape) is constructed

from the union of all surfaces (volumes) of a shape

under a transformation

– we use the affine transformation from 𝑡 to t + ∆𝑡

41

Swept bounds

Game Physics

• Swept sphere
capsule

• Swept AABB
convex poly

• Swept triangle
convex poly

• Swept convex poly
convex poly

42

Swept bounds

Narrow phase

Game Physics

• This algorithm effectively determines the

intersection between polyhedra by computing the

Euclidean distance between them

• Based on the property that the distance is the

same as the shortest distance between their

Minkowski difference and the origin

• Two new problems

– Calculate the Minkowski difference between two objects

– Calculate its distance to the origin (i.e. coordinate of the

closest point to the origin)

44

GJK algorithm

Game Physics

• The Minkowski difference 𝐴 ⊖ 𝐵 = 𝐴⨁(−𝐵) is

obtained by adding 𝐴 to the reflection of 𝐵 about

the origin

• Addition here means the swept bound of 𝐵 using 𝐴

• If 𝐴 and 𝐵 collide, 𝐴 ⊖ 𝐵 contains the origin

45

Minkowski difference

Game Physics

• To calculate the shortest distance to the origin, the
following algorithm is used
1. Initialize the simplex set 𝑄 with up to 𝑑 + 1 points from

the Minkowski difference object 𝐶

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop
(collision detected)

3. Compute the point 𝑃 of minimum norm of 𝐶𝐻(𝑄)

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that
𝑃 ∈ 𝐶𝐻(𝑄′)

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction −𝑃

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃, then
return 𝑃

7. Add 𝑉 to 𝑄 and go to step 2

46

GJK algorithm

Game Physics

• Imagine the following Minkowski difference object

𝐶 and origin 𝑂

47

GJK algorithm example

𝐶

𝑂

Game Physics

1. Initialize the simplex set 𝑄 with up to 𝑑+1 points

from the Minkowski difference object 𝐶

48

GJK algorithm example

0-simplex 1-simplex 2-simplex 3-simplex

simplex

Game Physics

1. Initialize the simplex set 𝑄 with up to 𝑑+1 points

from the Minkowski difference object 𝐶

49

GJK algorithm example

𝐶

𝑂

𝑄 = {𝑄0, 𝑄1, 𝑄2}

𝑄0

𝑄2

𝑄1

Game Physics

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop

(collision detected)

50

GJK algorithm example

𝐶

𝑂

𝑄 = {𝑄0, 𝑄1, 𝑄2}

𝑄0

𝑄2

𝑄1

Game Physics

3. Compute the point 𝑃 of minimum norm of the

convex hull 𝐶𝐻(𝑄)

51

GJK algorithm example

𝐶

𝑂

𝑄 = {𝑄0, 𝑄1, 𝑄2}

𝑄0

𝑄2

𝑄1

𝑃

Game Physics

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that

𝑃 ∈ 𝐶𝐻(𝑄′)

52

GJK algorithm example

𝑂

𝑄 = {𝑄1, 𝑄2}

𝑄2

𝑄1

𝑃

Game Physics

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction

− 𝑃

53

GJK algorithm example

Supporting point 𝑉 for a direction 𝑑 returned by support mapping function 𝑆𝑐(𝑑)

𝑉
𝑉

𝑑

𝐶 𝐶

Game Physics

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction

− 𝑃. Let’s call it 𝑉1.

54

GJK algorithm example

𝑂

𝑄 = {𝑄1, 𝑄2}

𝑄2

𝑄1

𝑃

𝑉1 = 𝑆𝑐(−𝑃)

Game Physics

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃,

then return 𝑃

7. Add 𝑉 to 𝑄 and go to step 2

55

GJK algorithm example

𝑂

𝑄 = {𝑄1, 𝑄2, 𝑉1}

𝑄2

𝑄1

𝑉1

𝑃

Game Physics

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop

(collision detected)

56

GJK algorithm example

𝑂

𝑄 = {𝑄1, 𝑄2, 𝑉1}

𝑄2

𝑄1

𝑉1

Game Physics

3. Compute the point 𝑃 of minimum norm of the

convex hull 𝐶𝐻(𝑄)

57

GJK algorithm example

𝑂

𝑄 = {𝑄1, 𝑄2, 𝑉1}

𝑄2

𝑄1

𝑉1
𝑃

Game Physics

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that

𝑃 ∈ 𝐶𝐻(𝑄′)

58

GJK algorithm example

𝑂

𝑄 = {𝑄2, 𝑉1}

𝑄2

𝑃
𝑉1

Game Physics

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction

− 𝑃. Let’s call it 𝑉2.

59

GJK algorithm example

𝑂

𝑄2 = 𝑆𝑐 𝑃 = 𝑉2

𝑄 = {𝑄2, 𝑉1}
𝑃

𝑉1

Game Physics

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃,

then return 𝑃

60

GJK algorithm example

𝑂

𝑄2 = 𝑉2

𝑄 = {𝑄2, 𝑉1}
𝑃

𝑉1

DONE!

Distance is 𝑃

Game Physics

• In step 5 we had to find the supporting point of 𝐶 in

the direction −𝑃

• It was intuitive an our example but how can we

automatically calculate that point in any given

situation?

– we need the actual definition of a supporting point

61

Supporting point

Game Physics

• A supporting point 𝑉 of a convex set 𝐶 in a

direction 𝑑 is one of the most distant points along 𝑑

• In other words 𝑉 is a supporting point if

𝑑 ∙ 𝑉 = max{𝑑 ∙ 𝑋 ∶ 𝑋 ∈ 𝐶}

– that is, 𝑉 is a point for which 𝑑 ∙ 𝑉 (its projection on 𝑉) is

maximal

– supporting points are sometimes called extreme points,

and are not necessarily unique

– for a polytope, one of the vertices can always be

selected as a supporting point for a given direction

62

Supporting point

Game Physics

• A support mapping 𝑆𝐶(𝑑) is a function that maps

the direction 𝑑 into a supporting point of 𝐶

• For simple convex shapes, support mappings can

be given in closed form

– Sphere centered at 𝑐 of radius 𝑟

𝑆𝐶 𝑑 = 𝑐 + 𝑟
𝑑

𝑑

– AABB centered at 𝑐 with size 2𝑒𝑥 × 2𝑒𝑦 × 2𝑒𝑧

 𝑆𝐶 𝑑 = 𝑐 + 𝑠𝑖𝑔𝑛 𝑑𝑥 𝑒𝑥 , 𝑠𝑖𝑔𝑛 𝑑𝑦 𝑒𝑦, 𝑠𝑖𝑔𝑛 𝑑𝑧 𝑒𝑧

 where 𝑠𝑖𝑔𝑛 𝛼 = −1 if 𝛼 < 0 and 1 otherwise

– Formulas exist for cylinder, cone etc.

63

Support mapping

Game Physics

• Convex shapes of higher complexity require the

support mapping function to determine a support point

using numerical methods

• For a polytope of 𝑛 vertices, a supporting vertex is

trivially found in 𝑂(𝑛) by searching over all vertices

• A greedy algorithm can be used to optimize the search

by exploring the polytope through a simple hill-climbing

algorithm (using the 𝑑 ∙ 𝑋𝑖 values)

– with extra optimizations we can design an algorithm in

𝑂(log 𝑛)

– we can also use frame coherency for determining the starting

point, and then in practice we observe a performance almost

insensitive to the complexity of the objects!

64

Support mapping
6.1

Game Physics

• Remember the collision detection algorithm

– Broad phase

• disregard pairs of objects that cannot collide

model and space partitioning

– Mid phase

• determine potentially colliding primitives

movement bounds

– Narrow phase

• determine exact contact between two shapes

Gilbert-Johnson-Keerthi algorithm

65

Collision detection algorithm

End of

Collision detection

 Next

Collision resolution

