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Collision detection 



Game Physics 

• We have rigid bodies moving in space according to 

forces applied on them 

• We have seen when and how to apply gravity, 

drag etc. 

• But reaction forces occur when a rigid body is in 

contact with another body 

• So we need to be able to detect that event and to 

apply the correct reaction force 

– Collision detection 

– Collision solving 
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The story so far 



Game Physics 

• Now is finally when we need the geometry of the 

object 

– A point (e.g. COM) is not enough anymore 

– We must know where the objects are in contact to apply 

the reaction force at that position 
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Collisions and geometry 

CryEngine 3 

(BeamNG) 



Game Physics 

• Collision detection occurs in three phases 

– Broad phase 

• disregard pairs of objects that cannot collide 

model and space partitioning 

– Mid phase 

• determine potentially colliding primitives 

movement bounds 

– Narrow phase 

• determine exact contact between two shapes 

Gilbert-Johnson-Keerthi algorithm 
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Collision detection algorithm 



Broad phase 



Game Physics 

• Game physics engines use a simplification of the 

geometry 

– To compare ‘every vertex of every mesh’ at each frame 

is usually not possible in real-time 

– As primitive shapes are used to estimate the inertia, 

primitive shapes are also used to estimate the collisions 

– Collision shapes do not have to be the same as inertia 

shapes 
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Collisions and geometry 



Game Physics 

• Technique used to quickly check complex objects 

using approximating bounding volumes 

• A bounding volume has the following properties 

– It should fit as tight as possible the object 

– Overlap test with another volume should be fast 

– It should be described with little parameters 

– It should be fast to recalibrate under transformation 

• What primitives to use so that collision checking is 

fast and accurate? 
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Model partitioning 



Game Physics 

• Create the smallest convex surface/volume 

enclosing the object 

– Good representation of all convex objects 

– Create false positive collisions for concave objects 

– Can still be very complex, so costly detection 
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Convex Hull 



Game Physics 

• Create the minimal sphere enclosing the object 

– Usually poor fit of the object (e.g. pipe), many false 

positive collisions 

– Stored in only 4 scalars, collision detection between 

spheres is very fast (11 prim. op.) 

– Trivial to update under rotation... 
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Bounding Sphere 



Game Physics 

• The minimal swept bounding sphere enclosing the 

object 

– Better fit than bounding sphere 

– Collision detection still quite fast (bounding sphere with 

a distance to segment) 
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Bounding Capsule 



Game Physics 

• Create a box which dimensions are aligned with 

the axes of the world coordinate system 

– Usually poor fit of the object (e.g. diagonal box), many 

false positive collisions, recalculation after rotation 

– Stored in 6 scalars, collision detection between AABBs 

is very fast (6 prim. op.) 
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Axis Aligned Bounding Box 



Game Physics 

• The general minimal bounding box (no preferred 

orientation), abbreviated as OBB 

– Better fit than AABB, but worse than convex hull (e.g. 

triangle) 

– Stored in 9+6 scalars, collision detection slower than 

AABB (200 prim. op.), but much faster than convex hull 

– Similar to 

bounding capsule 

with sharp ends 
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Oriented Bounding Box 



Game Physics 

• You can imagine using almost any primitive or 

combination of primitives 

• As soon as the detection is faster than on the 

object itself there is an interest 

– Bounding cylinder 

– Bounding ellipsoid 

– etc. 
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Other primitives 



Game Physics 

• Since one bounding volume can still creates many 

false positives, we build a hierarchy of volumes 

• Called Bounding Volume Hierarchy (BVH) 

• It has a tree structure with primitive volumes as 

leaves and enclosing volumes as nodes 

• During collision detection, the hierarchies are 

traversed and child bounding volumes are 

checked only when necessary 

– children do not have to be examined if their parent 

volumes do not intersect 
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Bounding hierarchies 



Game Physics 16 

Bounding hierarchies 



Game Physics 

• Used to make a fast selection of which models to 

test for collision 

• Based on the spatial configuration of the scene 

• Associate together objects that are physically 

close to each other 

• Only need to test collision with objects in the same 

partition 

• Quickly disregards many unnecessary tests 
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Space partitioning 



Game Physics 

• An octree is a tree data structure in which each 

node has exactly eight children 

• Partition the space in eight cubes (called octants) 

of equal volume along the dimensions of the space 
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Octree 



Game Physics 

• A kd-tree (k-dimensional) is a binary tree where 

every node is alternately associated with one of 

the k-dimensions 

• Usually the median hyperplane is chosen at each 

node 
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Kd-tree 



Game Physics 

• Binary space partitioning (BSP) creates BSP trees 

• Hyperplanes recursively partition space into two 

volumes but the planes can have any orientation 

• Hyperplanes are usually defined by polygons in 

the scene 
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Binary space partitioning 
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4 



Game Physics 

Uniform spatial 

subdivision 
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Space partitioning summary 

Quadtree 

Octree 

Kd-tree BSP-tree 



Mid phase 



Game Physics 

• You can imagine representing different objects with 

different primitives according to their original 

geometry 

– A simple convex object => convex hull 

– A spherical object like a ball => bounding sphere 

– A body part => bounding capsule 

– A box sliding on the floor => AABB 

– A box-like object that can translate and rotate => OBB 

• Ideally you have to implement detection algorithms 

for every possible combination of primitives 

– Some are easier to implement than others 
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Collision between primitives 



Game Physics 

• For two spheres 𝐴 and 𝐵 to intersect, the distance 

between their centers 𝑐𝐴 and 𝑐𝐵 should be smaller 

than the sum of their radii 𝑟𝐴 and 𝑟𝐵 
 

𝐴 ∩ 𝐵 ≠ ∅ ⇔ 𝑐𝐴 − 𝑐𝐵 ≤ 𝑟𝐴 + 𝑟𝐵 

 

• Distance between two non-intersecting spheres 
𝑑 𝐴, 𝐵 = max 𝑐𝐴 − 𝑐𝐵 − 𝑟𝐴 + 𝑟𝐵 , 0  

• Penetration depth of two intersecting spheres 

𝑝 𝐴, 𝐵 = max 𝑟𝐴 + 𝑟𝐵 − 𝑐𝐴 − 𝑐𝐵 , 0  
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Sphere-Sphere 



Game Physics 

• Project the boxes onto the axes, you will obtain 

two/three intervals per box, the two boxes collide if 

the intervals overlap 
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AABB-AABB 

A 
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Game Physics 

 

𝐴 ∩ 𝐵 = ∅ ⇔ 
𝑥𝑚𝑎𝑥𝐴

< 𝑥𝑚𝑖𝑛𝐵
∨ 𝑦𝑚𝑎𝑥𝐴

< 𝑦𝑚𝑖𝑛𝐵
∨ 

𝑥𝑚𝑖𝑛𝐴
> 𝑥𝑚𝑎𝑥𝐵

∨ 𝑦𝑚𝑖𝑛𝐴
> 𝑦𝑚𝑎𝑥𝐵
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AABB-AABB 
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Game Physics 27 

Separating Axis Theorem 

• Given two convex shapes, if we can find an axis 

along which the projections of the two shapes do 

not overlap, then the shapes do not collide 



Game Physics 

• In 2D, each of these potential separating axes is 

perpendicular to one of the edges of each shape 

– We solve our 2D overlap query using a series of 1D 

queries 

– If we find an axis along which the objects do not overlap, 

we don't have to continue testing the rest of the axes, 

we know that the objects don't overlap 

• As in a game it is more likely for two objects 

to not overlap, it speeds up calculations 

28 

Separating Axis Theorem 



Game Physics 

• For AABB-AABB it is easy to apply as the possible 

separating axes on which we have to project the 

object are the main axes 

• Equivalent to our previous collision checking of 

overlap of intervals 
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Separating Axis Theorem 



Game Physics 

• For non-axis-aligned shapes, we have to project 

our objects on the axes perpendicular to the edges 

 

Box-Polygon        Box-Curve      Circle-Polygon 
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Separating Axis Theorem 



Game Physics 

• Several variants exist but all first sort then prune 

• Objects are defined with their AABB 

• 2 objects overlap if and only if their projections on 

the x, y and z coordinate axes overlap 

– The projections give 3 [min,max] intervals 

– The min and max are stored in 3 sorted structures 

– Scan the objects in increasing order of min 

– Detect possible overlapping pair when min of an object 

is smaller than max of another 

– Combine the three results (AND condition to overlap) 
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Sweep and prune algorithm 



Game Physics 32 

Sweep and prune algorithm 
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Game Physics 

• Looking at uncorrelated sequences of positions is 

not enough 

• Our objects are in motion and we need to know 

when and where they collide 

– as we want to react to the collision e.g. bouncing 
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The time issue 

At 𝑡 

At 𝑡 + ∆𝑡 



Game Physics 

• Collision in-between steps can lead to tunneling 

– Objects pass through each other 

• They did not collide at 𝑡 and do not collide either at 𝑡 + ∆𝑡 

• But they did collide somewhere in between 

– Lead to false negatives 

• Tunneling is a serious issue in gameplay 

– Players getting to places they should not 

– Projectiles passing through characters and walls 

– Impossibility for the player to trigger actions on contact 

events 
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Tunneling 



Game Physics 35 

Tunneling 



Game Physics 

• Small objects tunnel more easily 

 

 

 

 

• Fast moving objects tunnel more easily 
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Tunneling 



Game Physics 

• Possible solutions 

– Minimum size requirement? 

• Fast object still tunnel 

– Maximum speed limit? 

• Small and fast objects not allowed (e.g. bullets...) 

– Smaller time step? 

• Essentially the same as speed limit 

• We need another approach to the solution 
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Tunneling 



Game Physics 

• Bounds enclosing the motion of the shape 

– In the time interval ∆𝑡, the linear motion of the shape is 

enclosed 

– Again, convex bounds are used, so the movement 

bounds are themselves primitive shapes 
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Movement bounds 



Game Physics 

• Sphere 
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Movement bounds 

• AABB 

• OBB 



Game Physics 

• If movement bounds do not collide, there is no 

collision 

• If movement bounds collide, there is possibly a 

collision 
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Movement bounds 



Game Physics 

• As primitive based movement bounds do not have 

a really good fit, we can use swept bounds 

– More accurate, but more costly to calculate collisions 

• A swept bound (or swept shape) is constructed 

from the union of all surfaces (volumes) of a shape 

under a transformation 

– we use the affine transformation from 𝑡 to t + ∆𝑡 
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Swept bounds 



Game Physics 

• Swept sphere 
capsule 

 

• Swept AABB 
convex poly 

 

• Swept triangle 
convex poly 

 

• Swept convex poly 
convex poly 
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Swept bounds 



Narrow phase 



Game Physics 

• This algorithm effectively determines the 

intersection between polyhedra by computing the 

Euclidean distance between them 

• Based on the property that the distance is the 

same as the shortest distance between their 

Minkowski difference and the origin 

• Two new problems 

– Calculate the Minkowski difference between two objects 

– Calculate its distance to the origin (i.e. coordinate of the 

closest point to the origin) 
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GJK algorithm 



Game Physics 

• The Minkowski difference 𝐴 ⊖ 𝐵 = 𝐴⨁(−𝐵) is 

obtained by adding 𝐴 to the reflection of 𝐵 about 

the origin 

• Addition here means the swept bound of 𝐵 using 𝐴 

• If 𝐴 and 𝐵 collide, 𝐴 ⊖ 𝐵 contains the origin 
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Minkowski difference 



Game Physics 

• To calculate the shortest distance to the origin, the 
following algorithm is used 
1. Initialize the simplex set 𝑄 with up to 𝑑 + 1 points from 

the Minkowski difference object 𝐶 

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop 
(collision detected) 

3. Compute the point 𝑃 of minimum norm of 𝐶𝐻(𝑄) 

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that 
𝑃 ∈ 𝐶𝐻(𝑄′) 

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction −𝑃 

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃, then 
return 𝑃  

7. Add 𝑉 to 𝑄 and go to step 2 
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GJK algorithm 



Game Physics 

• Imagine the following Minkowski difference object 

𝐶 and origin 𝑂 
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GJK algorithm example 

𝐶 

𝑂 



Game Physics 

1. Initialize the simplex set 𝑄 with up to 𝑑+1 points 

from the Minkowski difference object 𝐶 
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GJK algorithm example 

0-simplex 1-simplex 2-simplex 3-simplex 

simplex 



Game Physics 

1. Initialize the simplex set 𝑄 with up to 𝑑+1 points 

from the Minkowski difference object 𝐶 
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GJK algorithm example 

𝐶 

𝑂 

𝑄 = {𝑄0, 𝑄1, 𝑄2} 

𝑄0 

𝑄2 

𝑄1 



Game Physics 

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop 

(collision detected) 
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GJK algorithm example 

𝐶 

𝑂 

𝑄 = {𝑄0, 𝑄1, 𝑄2} 

𝑄0 

𝑄2 

𝑄1 



Game Physics 

3. Compute the point 𝑃 of minimum norm of the 

convex hull 𝐶𝐻(𝑄) 
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GJK algorithm example 

𝐶 

𝑂 

𝑄 = {𝑄0, 𝑄1, 𝑄2} 

𝑄0 

𝑄2 

𝑄1 

𝑃 



Game Physics 

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that 

𝑃 ∈ 𝐶𝐻(𝑄′) 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄1, 𝑄2} 

𝑄2 

𝑄1 

𝑃 



Game Physics 

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction 

− 𝑃 
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GJK algorithm example 

Supporting point 𝑉 for a direction 𝑑 returned by support mapping function 𝑆𝑐(𝑑) 

𝑉 
𝑉 

𝑑 

𝐶 𝐶 



Game Physics 

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction 

− 𝑃. Let’s call it 𝑉1. 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄1, 𝑄2} 

𝑄2 

𝑄1 

𝑃 

𝑉1 = 𝑆𝑐(−𝑃) 



Game Physics 

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃, 

then return 𝑃  

7. Add 𝑉 to 𝑄 and go to step 2 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄1, 𝑄2, 𝑉1} 

𝑄2 

𝑄1 

𝑉1 

𝑃 



Game Physics 

2. If the origin is in the convex hull 𝐶𝐻(𝑄), then stop 

(collision detected) 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄1, 𝑄2, 𝑉1} 

𝑄2 

𝑄1 

𝑉1 



Game Physics 

3. Compute the point 𝑃 of minimum norm of the 

convex hull 𝐶𝐻(𝑄) 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄1, 𝑄2, 𝑉1} 

𝑄2 

𝑄1 

𝑉1 
𝑃 



Game Physics 

4. Reduce 𝑄 to the smallest subset 𝑄′ of 𝑄 such that 

𝑃 ∈ 𝐶𝐻(𝑄′) 
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GJK algorithm example 

𝑂 

𝑄 = {𝑄2, 𝑉1} 

𝑄2 

𝑃 
𝑉1 



Game Physics 

5. Let 𝑉 = 𝑆𝑐(−𝑃) be a supporting point in direction 

− 𝑃. Let’s call it 𝑉2. 
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GJK algorithm example 

𝑂 

𝑄2 = 𝑆𝑐 𝑃 = 𝑉2 

𝑄 = {𝑄2, 𝑉1} 
𝑃 

𝑉1 



Game Physics 

6. If 𝑉 is no more extreme than 𝑃 in direction −𝑃, 

then return 𝑃  
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GJK algorithm example 

𝑂 

𝑄2 = 𝑉2 

𝑄 = {𝑄2, 𝑉1} 
𝑃 

𝑉1 

DONE! 

Distance is 𝑃  



Game Physics 

• In step 5 we had to find the supporting point of 𝐶 in 

the direction −𝑃 

• It was intuitive an our example but how can we 

automatically calculate that point in any given 

situation? 

– we need the actual definition of a supporting point 
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Supporting point 



Game Physics 

• A supporting point 𝑉 of a convex set 𝐶 in a 

direction 𝑑 is one of the most distant points along 𝑑 

• In other words 𝑉 is a supporting point if 

𝑑 ∙ 𝑉 = max{𝑑 ∙ 𝑋 ∶ 𝑋 ∈ 𝐶} 

– that is, 𝑉 is a point for which 𝑑 ∙ 𝑉 (its projection on 𝑉) is 

maximal 

– supporting points are sometimes called extreme points, 

and are not necessarily unique 

– for a polytope, one of the vertices can always be 

selected as a supporting point for a given direction 
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Supporting point 



Game Physics 

• A support mapping 𝑆𝐶(𝑑) is a function that maps 

the direction 𝑑 into a supporting point of 𝐶 

• For simple convex shapes, support mappings can 

be given in closed form 

– Sphere centered at 𝑐 of radius 𝑟 

𝑆𝐶 𝑑 = 𝑐 + 𝑟
𝑑

𝑑
 

– AABB centered at 𝑐 with size 2𝑒𝑥 × 2𝑒𝑦 × 2𝑒𝑧 

 𝑆𝐶 𝑑 = 𝑐 + 𝑠𝑖𝑔𝑛 𝑑𝑥 𝑒𝑥 , 𝑠𝑖𝑔𝑛 𝑑𝑦 𝑒𝑦, 𝑠𝑖𝑔𝑛 𝑑𝑧 𝑒𝑧  

   where 𝑠𝑖𝑔𝑛 𝛼 = −1 if 𝛼 < 0 and 1 otherwise 

– Formulas exist for cylinder, cone etc. 
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Support mapping 



Game Physics 

• Convex shapes of higher complexity require the 

support mapping function to determine a support point 

using numerical methods 

• For a polytope of 𝑛 vertices, a supporting vertex is 

trivially found in 𝑂(𝑛) by searching over all vertices 

• A greedy algorithm can be used to optimize the search 

by exploring the polytope through a simple hill-climbing 

algorithm (using the 𝑑 ∙ 𝑋𝑖 values) 

– with extra optimizations we can design an algorithm in 

𝑂(log 𝑛) 

– we can also use frame coherency for determining the starting 

point, and then in practice we observe a performance almost 

insensitive to the complexity of the objects! 
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Support mapping 
6.1 



Game Physics 

• Remember the collision detection algorithm 

– Broad phase 

• disregard pairs of objects that cannot collide 

model and space partitioning 

– Mid phase 

• determine potentially colliding primitives 

movement bounds 

– Narrow phase 

• determine exact contact between two shapes 

Gilbert-Johnson-Keerthi algorithm 
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Collision detection algorithm 



End of 

Collision detection 

 

 Next 

Collision resolution 


