Game Physics

Game and Media Technology
Master Program - Utrecht University

Dr. Nicolas Pronost

Collision detection

I
N

&
L

The story so far

We have rigid bodies moving in space according to
forces applied on them

We have seen when and how to apply gravity,
drag etc.

But reaction forces occur when a rigid body is In
contact with another body

So we need to be able to detect that event and to
apply the correct reaction force

— Collision detection

— Collision solving

Universiteit Utrecht Game Physics

Collisions and geometry

* Now is finally when we need the geometry of the
object
— A point (e.g. COM) is not enough anymore

— We must know where the objects are in contact to apply
the reaction force at that position

§% Universiteit Utrecht Game P hyS icS

Collision detection algorithm

« Collision detection occurs in three phases

— Broad phase
« disregard pairs of objects that cannot collide
» model and space partitioning
— Mid phase
« determine potentially colliding primitives
» movement bounds

— Narrow phase

« determine exact contact between two shapes
» Gilbert-Johnson-Keerthi algorithm

A

% | ;-“"-E Universiteit Utrecht Game PhySiCS

NS

Broad phase

Collisions and geometry

« Game physics engines use a simplification of the
geometry

— To compare ‘every vertex of every mesh’ at each frame
IS usually not possible in real-time

— As primitive shapes are used to estimate the inertia,
primitive shapes are also used to estimate the collisions

— Collision shapes do not have to be the same as inertia
shapes

% §- Universiteit Utrecht Game P hyS icS

Model partitioning

* Technique used to quickly check complex objects
using approximating bounding volumes

« A bounding volume has the following properties
— It should fit as tight as possible the object
— Overlap test with another volume should be fast
— It should be described with little parameters
— It should be fast to recalibrate under transformation

« What primitives to use so that collision checking is
fast and accurate?

% Tté Universiteit Utrecht Game PhySiCS

Convex Hull

« Create the smallest convex surface/volume
enclosing the object
— Good representation of all convex objects
— Create false positive collisions for concave objects
— Can still be very complex, so costly detection

% § Universiteit Utrecht Game P hyS icS

Bounding Sphere

« Create the minimal sphere enclosing the object

— Usually poor fit of the object (e.g. pipe), many false
positive collisions

— Stored In only 4 scalars, collision detection between
spheres is very fast (11 prim. op.)

— Trivial to update under rotation...

% § Universiteit Utrecht Game P hyS icS

10

Bounding Capsule

* The minimal swept bounding sphere enclosing the
object
— Better fit than bounding sphere

— Collision detection still quite fast (bounding sphere with
a distance to segment)

‘I Universiteit Utrecht Game Physics 11

Axis Aligned Bounding Box

« Create a box which dimensions are aligned with
the axes of the world coordinate system

— Usually poor fit of the object (e.g. diagonal box), many
false positive collisions, recalculation after rotation

— Stored in 6 scalars, collision detection between AABBS
IS very fast (6 prim. op.)

%§ Universiteit Utrecht Game Physics 12

Oriented Bounding Box

* The general minimal bounding box (no preferred

orientation), abbreviated as OBB

— Better fit than AABB, but worse than convex hull (e.g.
triangle)

— Stored in 9+6 scalars, collision detection slower than
AABB (200 prim. op.), but much faster than convex hull

— Similar to
bounding capsule
with sharp ends

: '_ ! & Universiteit Utrecht Game P hySiCS 13

Other primitives

* You can imagine using almost any primitive or
combination of primitives

* As soon as the detection iIs faster than on the
object itself there Is an interest
— Bounding cylinder
— Bounding ellipsoid
— etc.

A

? | % Universiteit Utrecht Game PhySiCS

NS

14

Bounding hierarchies

Since one bounding volume can still creates many
false positives, we build a hierarchy of volumes

Called Bounding Volume Hierarchy (BVH)

|t has a tree structure with primitive volumes as
eaves and enclosing volumes as nodes

« During collision detection, the hierarchies are
traversed and child bounding volumes are
checked only when necessary

— children do not have to be examined if their parent
volumes do not intersect

N
% :1% Universiteit Utrecht Game Physics 15

NS

Bounding hierarchies

Universiteit Utrecht

Game Physics

16

Space partitioning

Used to make a fast selection of which models to
test for collision

Based on the spatial configuration of the scene

Associlate together objects that are physically
close to each other

Only need to test collision with objects in the same
partition

Quickly disregards many unnecessary tests

S Universiteit Utrecht Game Physics

Octree

« An octree Is a tree data structure in which each
node has exactly eight children

 Partition the space in eight cubes (called octants)
of equal volume along the dimensions of the space

hh
31

..............

%
W

Universiteit Utrecht

Game Physics

§Wf X

18

Kd-tree

« Akd-tree (k-dimensional) is a binary tree where

every node Is alternately associated with one of
the k-dimensions

« Usually the median hyperplane is chosen at each
node

’é

\

@

RN |
T § Universiteit Utrecht Game Physics 19

Binary space partitioning

* Binary space partitioning (BSP) creates BSP trees

« Hyperplanes recursively partition space into two
volumes but the planes can have any orientation

* Hyperplanes are usually defined by polygons in

| | Al
| PART3 |
4
PART PART 1 A2
2 3 A 1
Bl A3
2
——————————— ; I
A PART 6 / I PART
h / 1 PART 4 B2 PART 2 A4
N, K I
3 I
I
> B 1/ PaArT |
PART 4 : PART 5 B3 PART 3 A
5
I
I
// : PART 6 B
W |
S U S Universiteit Utrecht Game Physics 20

NS

Space partitioning summary

/

/

Uniform spatial
subdivision

Universiteit Utrecht

Quadtree
Octree

Kd-tree

Game Physics

BSP-tree

21

Mid phase

Collision between primitives

* You can imagine representing different objects with
different primitives according to their original
geometry
— A simple convex object => convex hull
— A spherical object like a ball => bounding sphere
— A body part => bounding capsule
— A box sliding on the floor => AABB
— A box-like object that can translate and rotate => OBB

 |deally you have to implement detection algorithms
for every possible combination of primitives

— Some are easier to implement than others

§ g% Universiteit Utrecht

%§ Game Physics 23

Sphere-Sphere

* For two spheres A and B to intersect, the distance
between their centers ¢, and cz should be smaller
than the sum of their radii r, and g

ANB#Q & |lcy —cgll| <1y + 13
« Distance between two non-intersecting spheres
d(A,B) = max(|lcy — cgll — (14 +735),0)

« Penetration depth of two intersecting spheres
p(A,B) = max(ry + 15 — llca — cgll,0)

5?; M S Universiteit Utrecht Game Physics

AABB-AABB

* Project the boxes onto the axes, you will obtain
two/three intervals per box, the two boxes collide if
the Intervals overlap

G — —

) S—

G — —

|
[

",
N

. Universiteit Utrecht Game Physics

N
L

AABB-AABB

ANB =0

xmaxA < xminB \ :VmaxA < YminB \4
xminA > xmaxB v YminA > YmaxB

y 7 N
Ymax, +
Ymaxg + M\
yminA -T B
YminB -+
Xming Xmax 4
| | | | >
1 1 1 1 > X
xminB xmaxB
NI .
= M = Universiteit Utrecht Game Physics 26

)

N
L

N

1

Separating Axis Theorem

« Given two convex shapes, If we can find an axis
along which the projections of the two shapes do
not overlap, then the shapes do not collide

Universiteit Utrecht Game Physics

Separating Axis Theorem

* |n 2D, each of these potential separating axes Is
perpendicular to one of the edges of each shape
— We solve our 2D overlap query using a series of 1D
queries
— If we find an axis along which the objects do not overlap,
we don't have to continue testing the rest of the axes,
we know that the objects don't overlap
 Asin agame it is more likely for two objects
to not overlap, it speeds up calculations

Zz u

N

Universiteit Utrecht Game Physics 28

£

Separating Axis Theorem

 For AABB-AABB it Is easy to apply as the possible
separating axes on which we have to project the
object are the main axes

« Equivalent to our previous collision checking of
overlap of intervals

= M S Universiteit Utrecht Game Physics

Separating Axis Theorem

* For non-axis-aligned shapes, we have to project
our objects on the axes perpendicular to the edges

Box-Polygon Box-Curve Circle-Polygon
5;5; %:;% Universiteit Utrecht Game Physics 30

Sweep and prune algorithm

« Several variants exist but all first sort then prune
* Objects are defined with their AABB

« 2 objects overlap if and only if their projections on
the X, y and z coordinate axes overlap
— The projections give 3 [min,max] intervals
— The min and max are stored in 3 sorted structures
— Scan the objects in increasing order of min

— Detect possible overlapping pair when min of an object
IS smaller than max of another

— Combine the three results (AND condition to overlap)

§% Universiteit Utrecht Game P hyS icS

31

Sweep and prune algorithm

X, Y Or z axis

, >
A
B
C
D
CurrentObjects [] [C] [C,A] [C,A,B] [A,B] [A] [A,D] [A] []
CandidatePairs [CA] U [BC, BA] U [DA]
[CA,BC,BA, DA]
N
5*‘5:1-’4 Universiteit Utrecht Game Physics 32

The time Issue

* Looking at uncorrelated sequences of positions Is
not enough

* Our objects are in motion and we need to know
when and where they collide
— as we want to react to the collision e.g. bouncing

Att + At

* Universiteit Utrecht Game P hySiCS

33

Tunneling

« Collision in-between steps can lead to tunneling

— Objects pass through each other
« They did not collide at t and do not collide either at t + At
« But they did collide somewhere in between

— Lead to false negatives
* Tunneling Is a serious issue Iin gameplay
— Players getting to places they should not

— Projectiles passing through characters and walls

— Impossiblility for the player to trigger actions on contact
events

%TL § Universiteit Utrecht Game Physics 34

E Universiteit Utrecht

Tunneling

Game Physics

35

Tunneling

« Small objects tunnel more eaS|Iy
O
« Fast moving objects tunnel more easily

%ﬁ% Universiteit Utrecht Game Physics 36

\

§

Tunneling

« Possible solutions
— Minimum size requirement?
« Fast object still tunnel
— Maximum speed limit?
« Small and fast objects not allowed (e.g. bullets...)

— Smaller time step?
« Essentially the same as speed limit

* We need another approach to the solution

@

W
N é Universiteit Utrecht Game Physics

AN

Movement bounds

* Bounds enclosing the motion of the shape

— In the time Iinterval At, the linear motion of the shape is
enclosed

— Again, convex bounds are used, so the movement
bounds are themselves primitive shapes

%{TL § Universiteit Utrecht Game Physics 38

« Sphere

Movement bounds

A

« AABB

Game Physics

39

Movement bounds

* |If movement bounds do not collide, there is no
collision

 If movement bounds collide, there Is possibly a
collision

Game Physics

Swept bounds

* As primitive based movement bounds do not have
a really good fit, we can use swept bounds
— More accurate, but more costly to calculate collisions

« Aswept bound (or swept shape) Is constructed

from the union of all surfaces (volumes) of a shape
under a transformation

— we use the affine transformation from t to t + At

&

\

@

RN |
Bl = Universiteit Utrecht Game Physics 41
U

Swept bounds

VI

Swept sphere
» capsule

« Swept AABB
» convex poly

Swept triangle
» convex poly

Swept convex poly
» convex poly

Universiteit Utrecht Game P hyS ICS

Narrow phase

GJK algorithm

* This algorithm effectively determines the
Intersection between polyhedra by computing the
Euclidean distance between them

« Based on the property that the distance Is the
same as the shortest distance between their
Minkowski difference and the origin

 Two new problems

— Calculate the Minkowski difference between two objects

— Calculate its distance to the origin (i.e. coordinate of the
closest point to the origin)

’é

\

ﬁ

RN :
N § Universiteit Utrecht Game Physics 44
m

Minkowski difference

* The Minkowski difference A© B = A@(—B) Is
obtained by adding A to the reflection of B about
the origin

« Addition here means the swept bound of B using A

* |If A and B collide, A © B contains the origin

A®B A A®LB

] A — p——Dht |
B/» _(__//

N
NS

N
7
Z00

: Universiteit Utrecht Game P hySiCS 45

GJK algorithm

 To calculate the shortest distance to the origin, the
following algorithm is used

1.

2.

©

€& Unive

Initialize the simplex set Q with up to d + 1 points from
the Minkowski difference object C

If the origin is in the convex hull CH(Q), then stop
(collision detected)

Compute the point P of minimum norm of CH(Q)

Reduce Q to the smallest subset Q' of Q such that
P e CH(Q"

Let V = S.(—P) be a supporting point in direction —P

If V IS no more extreme than P in direction —P, then
return || P||

Add V to Q and go to step 2

rsiteit Utrecht Game Physics 46

GJK algorithm example

* Imagine the following Minkowski difference object
C and origin O

iversiteit Utrecht Game PhySiCS

47

GJK algorithm example

1. Initialize the simplex set Q with up to d+1 points
from the Minkowski difference object C

S A e

O-simplex 1-simplex 2-simplex 3-simplex
simplex
@ J
S U= Un i
?@3‘§ U Utrech Game Physics 48

GJK algorithm example

1. Initialize the simplex set Q with up to d+1 points
from the Minkowski difference object C

Q1

(o
Q — {QOJ Ql: QZ}

Q2

iversiteit Utrecht Game Physics 49

GJK algorithm example

2. If the origin is in the convex hull CH(Q), then stop
(collision detected)

Q1

(o
Q — {QO) Ql: QZ}

Q2

Universiteit Utrecht Game P hyS ICS

50

GJK algorithm example

3. Compute the point P of minimum norm of the
convex hull CH(Q)

Q1

(o
Q — {QO) Ql: QZ}

Q2

Universiteit Utrecht Game P hyS ICS

51

GJK algorithm example

4. Reduce Q to the smallest subset Q' of Q such that
P e CH(Q"

Q1

Q — {QlJ QZ}

Q2

iversiteit Utrecht Game PhySiCS

52

GJK algorithm example

5.LetV = S.(—P) be a supporting point in direction
— P

Yy
S
Ir s

Supporting point V for a direction d returned by support mapping function S.(d)

Universiteit Utrecht Game P hyS ICS 53

GJK algorithm example

5.LetV = S.(—P) be a supporting point in direction
— P. Let's call it V5.

Q1

Q — {er QZ}

iversiteit Utrecht Game PhySiCS

54

GJK algorithm example

6. If V IS no more extreme than P In direction —P,
then return || P||

/.Add VV to Q and go to step 2

Q1

Q ={0Q1, Q2 V1}

Q2

iversiteit Utrecht Game PhySiCS

55

GJK algorithm example

2. If the origin is in the convex hull CH(Q), then stop
(collision detected)

Q1.

Q = {01, Q2 V1}

Q2

iversiteit Utrecht Game Physics 56

GJK algorithm example

3. Compute the point P of minimum norm of the
convex hull CH(Q)

Q1.

Q = {01, Q2 V1}

Q2

iversiteit Utrecht Game Physics 57

GJK algorithm example

4. Reduce Q to the smallest subset Q' of Q such that
P e CH(Q"

Q =1{0Q2 V1}

Vi
-

iversiteit Utrecht Game PhySiCS

58

GJK algorithm example

5.LetV = S.(—P) be a supporting point in direction
— P. Let'scall it V,.

Q =1{0Q2 V1}

Q- = Sc(P) =V,

iversiteit Utrecht Game Physics 59

GJK algorithm example

6. If V IS no more extreme than P In direction —P,
then return || P||

DONE!
Distance is || P
Q =1{0Q2 V1}

Q=1

iversiteit Utrecht Game Physics 60

Supporting point

* In step 5 we had to find the supporting point of C In
the direction —P

|t was Intuitive an our example but how can we
automatically calculate that point in any given
situation?
— we need the actual definition of a supporting point

N
NS

N
7
Z00

. Universiteit Utrecht Game Physics 61

Supporting point

« A supporting point V of a convex set C in a
direction d is one of the most distant points along d

 In other words V Is a supporting point if
d-V =max{d-X:X € C}
— that is, V is a point for which d - V (its projection on V) is
maximal

— supporting points are sometimes called extreme points,
and are not necessarily unique

— for a polytope, one of the vertices can always be
selected as a supporting point for a given direction

%TL § Universiteit Utrecht Game Physics 62

Support mapping

« A support mapping S-(d) Is a function that maps
the direction d into a supporting point of C

* For simple convex shapes, support mappings can
be given in closed form

— Sphere centered at ¢ of radius r

d
S~-(d) =c+1r——
c(d) Il

— AABB centered at ¢ with size 2e, X 2e, X 2e,

Sc(d)=c+ (Sign(dx)ex,sign(dy)ey, Sign(dz)ez)

where sign(a) = —1if a < 0 and 1 otherwise
— Formulas exist for cylinder, cone etc.
§ g% Universiteit Utrecht

Game Physics
= y 63
N

Support mapping VA

T
6.1

« Convex shapes of higher complexity require the
support mapping function to determine a support point
using numerical methods

* For a polytope of n vertices, a supporting vertex is
trivially found in O(n) by searching over all vertices

« A greedy algorithm can be used to optimize the search
by exploring the polytope through a simple hill-climbing
algorithm (using the d - X; values)

— with extra optimizations we can design an algorithm in
O(logn)

— we can also use frame coherency for determining the starting
point, and then in practice we observe a performance almost
Insensitive to the complexity of the objects!

&

\

@

RN :
Bl = Universiteit Utrecht Game Physics 64
N

Collision detection algorithm

 Remember the collision detection algorithm

— Broad phase
« disregard pairs of objects that cannot collide
» model and space partitioning
— Mid phase
« determine potentially colliding primitives
» movement bounds

— Narrow phase

« determine exact contact between two shapes
» Gilbert-Johnson-Keerthi algorithm

A

% | ;-“"-E Universiteit Utrecht Game PhySiCS

NS

65

End of
Collision detection

Next
Collision resolution

